Karela Fry

Just another WordPress.com weblog

Voyager into the void

leave a comment »

Location of Voyager 1 in 2013

The first human interstellar craft was launched in 1977. For the last 35 years it has been travelling inside a bubble of the sun’s atmosphere. NASA issued a press release claiming that Voyager 1 is now in interstellar space:

NASA’s Voyager 1 spacecraft officially is the first human-made object to venture into interstellar space. The 36-year-old probe is about 12 billion miles (19 billion kilometers) from our sun.

New and unexpected data indicate Voyager 1 has been traveling for about one year through plasma, or ionized gas, present in the space between stars. Voyager is in a transitional region immediately outside the solar bubble, where some effects from our sun are still evident. A report on the analysis of this new data, an effort led by Don Gurnett and the plasma wave science team at the University of Iowa, Iowa City, is published in Thursday’s edition of the journal Science.

“Now that we have new, key data, we believe this is mankind’s historic leap into interstellar space,” said Ed Stone, Voyager project scientist based at the California Institute of Technology, Pasadena. “The Voyager team needed time to analyze those observations and make sense of them. But we can now answer the question we’ve all been asking — ‘Are we there yet?’ Yes, we are.”

A separate press release from NASA explains how they conclude that the craft has reached interstellar space:

Whether and when NASA’s Voyager 1 spacecraft, humankind’s most distant object, broke through to interstellar space, the space between stars, has been a thorny issue. For the last year, claims have surfaced every few months that Voyager 1 has “left our solar system.” Why has the Voyager team held off from saying the craft reached interstellar space until now?

In May 2012, the number of galactic cosmic rays made its first significant jump, while some of the inside particles made their first significant dip. The pace of change quickened dramatically on July 28, 2012. After five days, the intensities returned to what they had been. This was the first taste of a new region, and at the time Voyager scientists thought the spacecraft might have briefly touched the edge of interstellar space.

By Aug. 25, when, as we now know, Voyager 1 entered this new region for good, all the lower-energy particles from inside zipped away. Some inside particles dropped by more than a factor of 1,000 compared to 2004. The levels of galactic cosmic rays jumped to the highest of the entire mission. These would be the expected changes if Voyager 1 had crossed the heliopause, which is the boundary between the heliosphere and interstellar space. However, subsequent analysis of the magnetic field data revealed that even though the magnetic field strength jumped by 60 percent at the boundary, the direction changed less than 2 degrees. This suggested that Voyager 1 had not left the solar magnetic field and had only entered a new region, still inside our solar bubble, that had been depleted of inside particles.

Then on April 9, 2013, it happened: Voyager 1’s plasma wave instrument picked up local plasma oscillations. Scientists think they probably stemmed from a burst of solar activity from a year before, a burst that has become known as the St. Patrick’s Day Solar Storms. The oscillations increased in pitch through May 22 and indicated that Voyager was moving into an increasingly dense region of plasma. This plasma had the signatures of interstellar plasma, with a density more than 40 times that observed by Voyager 2 in the heliosheath. [Listen to these plasma oscillations]

Gurnett and Kurth began going through the recent data and found a fainter, lower-frequency set of oscillations from Oct. 23 to Nov. 27, 2012. When they extrapolated back, they deduced that Voyager had first encountered this dense interstellar plasma in August 2012, consistent with the sharp boundaries in the charged particle and magnetic field data on August 25.

“What we can say is Voyager 1 is bathed in matter from other stars,” Stone said. “What we can’t say is what exact discoveries await Voyager’s continued journey. No one was able to predict all of the details that Voyager 1 has seen. So we expect more surprises.”

Voyager 1, which is working with a finite power supply, has enough electrical power to keep operating the fields and particles science instruments through at least 2020, which will mark 43 years of continual operation. At that point, mission managers will have to start turning off these instruments one by one to conserve power, with the last one turning off around 2025.

Voyager 1 will continue sending engineering data for a few more years after the last science instrument is turned off, but after that it will be sailing on as a silent ambassador. In about 40,000 years, it will be closer to the star AC +79 3888 than our own sun. (AC +79 3888 is traveling toward us faster than we are traveling towards it, so while Alpha Centauri is the next closest star now, it won’t be in 40,000 years.) And for the rest of time, Voyager 1 will continue orbiting around the heart of the Milky Way galaxy, with our sun but a tiny point of light among many.

Advertisements

Written by Arhopala Bazaloides

September 14, 2013 at 4:39 am

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: